
Problem Sheet 2:Additional Questions v2

Problem Sheet 2:Stirling’s Theorem

Stirling’s Theorem relates to any asymptotic result for N ! as N →∞.
In Problem Sheet 1 you were asked to show

e

(

N

e

)N

≤ N ! ≤ eN

(

N

e

)N

, (35)

by examining

logN ! =
∑

1≤n≤N

log n.

In Chapter 2 we showed that

∑

1≤n≤x

log x = x log x− x+O(log x) , (36)

for any real x > 1. To improve (35) we need to improve (36), but only
for integer x.

17. The function {t} is periodic, period 1. The result of Question 1

∫ α+1

α

{t} dt = 1

2
, (37)

can be interpreted as saying that {t} has average value 1/2.

Define

P (x) =

∫ x

1

(

{t} − 1

2

)

dt.

Prove that P (x) is periodic, period 1 and P (n) = 0 for all n ∈ Z.

18. Euler Summation, Proposition 2.8, is for sums over n ≤ x with x real.

Improved results can be given when x is an integer.

i) Prove
∑

1≤n≤N

log n = N logN −N + 1 +

∫ N

1

{t}
t
dt, (38)

for integers N ≥ 1.
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ii) Prove, by integrating by parts,

∑

1≤n≤N

log n = N logN −N +
1

2
logN + 1 +

∫ N

1

P (t)

t2
dt, (39)

for integers N ≥ 1, where P (t) is the function seen in Question 17.

iii) Prove that there exists a constant C such that

∑

1≤n≤N

log n = N logN −N +
1

2
logN + C +O

(

1

N

)

, (40)

for integers N ≥ 1.

Hint Use an idea seen in the proof of Theorem 2.9, replacing any
integral over [1, x] of an integrable function by an integral over [1,∞)
and then estimating the tail end integral over (x,∞).

This could be compared with (36) ,

∑

1≤n≤x

log n = x log x− x+O(log x) ,

for real x ≥ 1.

iv) Deduce Stirling’s formula in the form

N ! = A

(

N

e

)N √
N

(

1 +O

(

1

N

))

,

for some constant A.

It can be shown that A =
√
2π (but not here)..

This shows that the true result for N ! lies ‘midway’ between the bounds
in (35).

19. For those who need more like Questions 11 and 12. On a previous
Problem Sheet you were asked to show that

∞
∑

n=3

1

n log n (log log n)β
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converges iff β > 1? For various reasons we consider the n-th prime to
satisfy pn ≈ n log n. Then log pn ≈ log n and

pn (log log pn)
β ≈ n log n (log log n)β .

Prove that
∑

p≥3

1

p (log log p)β

converges iff β > 1.

Hint Remove the 1/ (log log p)β factor by partial summation and then
apply Merten’s Theorems.

20. i) Using the same method as in Question 18 prove that

∑

1≤n≤N

1

n
= logN + γ +

1

2N
+O

(

1

N2

)

, (41)

for integer N ≥ 1, and where γ is Euler’s constant.

ii) Why will (41) not hold if the integer N is replaced by real x?

In previous questions we have looked at
∑

(log n)ℓ and
∑

(log n)ℓ /n.

The latter sum has a distinctly simpler result, two main terms and best
possible error, whilst the first has ℓ + 1 main terms. Here we look at
∑

logℓ (x/n) and
∑

(

logℓ (x/n)
)

/n. The results are reversed in that

the first sum has a simpler form than the second.

21. Prove, using (29) , that for all integers ℓ ≥ 1 we have

∑

n≤x

logℓ (x/n)

n
=

1

ℓ+1
logℓ+1 x+O

(

logℓ x
)

.

22. Use Question 5 to improve Question 21 and show that for every integer
ℓ ≥ 1, there exists a polynomial Qℓ (y) of degree ℓ+1 leading coefficient
1/ (ℓ+1) such that

∑

n≤x

logℓ (x/n)

n
= Qℓ (log x) +O

(

logℓ x

x

)

.

Hint use the Binomial expansion on logℓ (x/n) .
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23. Apply (29) to prove that

∑

n≤x

logℓ
(x

n

)

= ℓ!x+Oℓ

(

logℓ x
)

, (42)

for all integers ℓ ≥ 0.

24. Prove the discrete version of Partial Summation: For integers N ≥
M ≥ 1 we have

N
∑

r=M

arf(r) =
N−1
∑

r=M

A(r) (f(r)− f(r+1))

+A(N) f(N)− A(M−1) f(M) ,

where A(n) =
∑n

r=1
ar (Conventionally A (0) = 0).

Note This result is useful when f is not differentiable. If f has a
continuous derivative you can write

f(r)− f (r+1) = −
∫ r+1

r

f ′(t) dt,

and you recover the Partial Summation seen in the notes.

Hint Note that ar = A (r)− A (r − 1) .

25. Prove Dirichlet’s test for convergence. In the notation of Question
24, suppose that

i) there exists C > 0 such that |A (r)| ≤ C for all r ≥ 1;

ii) f(r)→ 0 as r →∞;

iii)
∑∞

r=1
|f(r)− f(r+1)| is convergent, with sum F , say.

Then
∑∞

r=1
arf(r) converges, to S say, with |S| ≤ CF.

Hint Use partial summation to rewrite the given sum as a sum on which
you can apply a comparison test for series from First Year Analysis.
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26. Question on Merten’s Theorems extended Recall from Chapter 1 that
given N ∈ N the set N is defined by N = {n : p|n⇒ p ≤ N} and we
used the fact that

∑

n∈N

1

n
>

∑

n≤N

1

n
= logN +O(1) .

Prove that
∑

n∈N

1

n
= κ logN +O(1)

for some κ > 0.

What is the numerical value of κ?

Hint Write this sum as an Euler Product.

27. (Hard) Show that if h(t)→ c as t→∞ then

lim
x→∞

1

log x

∫ x

1

h(t)

t
dt→ c.

Deduce from Question 14 that IF limt→∞ ψ(t) /t exists then the limit
has value 1.

Note, this is not a proof of the Prime Number Theorem, but shows
what the correct statement of the Prime Number Theorem should be.

Hint You need to verify the ε − X definition of limit at infinity, i.e.
for all ε > 0 there exists X such that if x > X then

∣

∣

∣

∣

1

log x

∫ x

1

h(t)

t
dt− c

∣

∣

∣

∣

< ε.

To this end write

c =
1

log x

∫ x

1

c

t
dt,

substitute in and try to make use of the assumption that h(t) → c as
t→∞.
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